Model-Driven Testing

A Property-Based Approach for End-to-End
Testing

Nisan Haramati
@nisanharamati
nisan@haramati.ca

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Model-Driven Testing - The Why

> Testing a distributed systems framework
> Test space too big

{ input
X { add/remove nodes
X { crash/recover nodes
x { application topologies

> End-to-End properties
> Reproducibility

}
}
}
}

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Model-Driven Testing - The What

> From End-to-End Testing
> Programmatic instrumentation
> System as a gray/black box
> From Property-Based Testing
> Fuzzing
> Focus on properties
> Broad specification

e

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Model-Driven Testing - The What

> Adding
> Model: validation context for state transitions
> |s the new state reachable from the previous state?

> Progressive validation

> History-dependence
> |s the new state valid, given the previous state(s)?

oy x\s

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Example - Cassandra Cluster Size

> QOperations: add_nodes, remove_nodes

> Properties (*)
> size(add([...]), cluster) ==
size(cluster) + size([...]) Q’G * OO0

> size(remove([...]), cluster) == °°°
size(cluster) - size([...]) Q*G - @O
®

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Example - Cassandra Cluster Size

> What can possibly go wrong?

> (Cluster too big (can’t split data further) ()
> (Cluster overloaded (can’'t handle the

overhead) + 900

Degraded availability

Network partition o °G
Full disk NOICIO
Noisy neighbour O, o (o)

Bad configuration

YVYVYYVYY

.

SD——

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Example - Cassandra Cluster Size

> What can possibly go wrong?
> Testing simple properties can reveal

()
deeply hidden pathologies
Ply P g G’G + @©®O®

N

B
[

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; |Is this Model Based Testing?

> Short answer: Yes. Sort of.
> Key Concept: Model as validation context
> Long answer: No. Sort of.
> Key Difference: Model isn't restricted to test
generation and output validation.
> |mportant distinction in distributed systems tests

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

tldl; Key Takeaway

> Model-Driven Testing
> |s a Property-Based extension to End-to-End testing
> That allows us to validate and regression test
end-to-end properties
> |n complex and distributed systems
> Where measurement and validation are otherwise
hard or impossible

e

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Agenda

Too long didn't listen;

Background

The Challenge: Testing a Complex Distributed Framework
Model-Driven Testing

Examples

Conclusions

References

YYYVYYVYYY

’\\,____

10
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

About me

Distributed Systems at Wallaroo Labs

Real-time Complex Event Processing

Data Quality in Real-time and Distributed Systems
Data Engineering and Infrastructure

> Online dating, bioinformatics, fintech

YYVYY

’\\,____

11
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo

> Framework for distributed data processing apps
> Managed state
> Application as an execution graph
> Scale, concurrency, distribution, reliability

> Written in Ponylang

> Similar to Apache Flink

e

12
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Word Count in Wallaroo

>

V VY

Topology as

Code
Resources
State
Compute

Source(Decode)
.to(Split)
.to(Lower)
.to(Strip)
.key_by(MyKeyFunction)
.to(Count)
.to_sink(Encode)

13

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati

Word Count in Wallaroo

@nisanharamati

> Application e o, ‘ou, B T S O,
N K
as Code —[P— —U 10 , ’Q)m O B r—
byfe[l String String(l sTrey Strg v ﬂ.,(.[_g’ count il
> Resources Compute [} |
) |
> State ; y '5
| V) oe]
> Compute] Cate !
CPU
MEM MEM
NE T NET
w Substrate Wo
14

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Word Count in Wallaroo

> Application e o, oy, B,
as Code — P —0—0—0=
bytel] | String Strivgn ST Ll

> Resource Compute

> State
j/ ‘
> Compute Cate
NE 7T,
":{ ET Wa Substrate

iS5
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Word Count in

> Applicatio loyg
as Code — | (O ,
String(] S ’
> Resource o
> State ;
| {k. :V, KJ \/J ;) 28 0
> Compute a Cate
cpbu cpuU
MEM MEM -
NE T
!:{ Esis Wa Substrate

16

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

The Challenge:

Testing a Complex Distributed Framework

17
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo Characteristics

> Distributed — Orchestration

> Real-time — External dependencies (sources, sinks)
— History dependence

> QOpaque state — Signal generation

> Framework — Not directly testable
— Large space of possible applications

e

18
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

We Might Want to Test...

> Functional
> Qutput == Expectation(Input)
> QOperational
> Actually works
> Scales — Can add/remove workers
> Reliable — Can recover from worker failure

.

19
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati

We Might Want to Test...

> Qualitative — Core Guarantees

> (Consistency

> Individual state - sequential consistency
> @Global - causal consistency

> Everything arrives
> Where it should
> |n order
> Without loss or duplication

e

WallarooLabs: Model-Driven Testing

@nisanharamati

20

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Model-Driven Testing

21
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Property-based testlng

|s this a unicorn?

Has 1 horn
Has 4 legs
Has 1 tall

Has 2 ears

e

22
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati

Property-based testing

1. A fuzzer
2. Alibrary of tools for making
It easy to construct

property-based tests using
that fuzzer.

- Dr. Maclver, hypothesis.works

| —

WallarooLabs: Model-Driven Testing

@nisanharamati

Fuzzer

&
O]J@O
¢

Property?

e f(x) => y

23

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati

Fuzzer

e Produce input data for the test

e Possibly dynamically
generated

e Possibly dependent on results

of previous runs
- Dr. Maclver, hypothesis.works

WallarooLabs: Model-Driven Testing

@nisanharamati

24

https://unsplash.com/@wirhabenzeit/portfolio

Property-based testing

def sum(numl, num2):

return numl + num

Unit test
def test_unit_sum():
assert(sum(1,”)

7
—

3\

),

25

https://unsplash.com/@wirhabenzeit/portfolio

Property-based testing

def sum(numl, num2):

return numl1 + num2 if num2

Property Based test
def test_property_sum():
fuzz loop
f random import randrange
generate a million random pairs
for 1in range():
nl randrange
n2 randrange

/
(-
(-

Test the sum property
assert(sum(nl, n2) ==

26

https://unsplash.com/@wirhabenzeit/portfolio

Property-based testing

def test_property_sum():
fuzz loop
from random import randrange
generate a million random pairs
for _ in range(1000000):
nl randrange(-1000000000, 1000000000)
n2 randrange(-1000000000, 1000000000)

Test the sum property
assert(sum(ni, n2) == n1 + n2)

- +4- > 4
2 rY -

B ¥ AN

AssertionError

27

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati

End-to-End Properties

> Functional Correctness

> QOperational Acceptance
> Robustness, reliability

> Qualitative Correctness
> (Consistency

e

WallarooLabs: Model-Driven Testing

@nisanharamati

28

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

The End-to-End Problem

> Wallaroo is not a pure function... or a class... or even
a single executable

> Need
> Qrchestration

> Remote control and measurement

> A distributed systems problem
> Order of concurrent events, clock skew, asynchronous

e

29
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

The End-to-End Problem

) Fuzzer
> For every single test . y
> Start Wallaroo cluster, sinks, o #
o Property? %
sources 3 i
> (et itinto a specific state
) . System
> Send input, induce an event, -apply(x;) => vy,
o .apply(x,) =>y,
or inject a fault
.apply(x,) =>vy,

> Measure before, during, after

30

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Wallaroo - End-to-End Testing

Start a cluster
with Cluster(command=?, host=?,
sources=?,workers=?,
sinks=7?, sink_mode=?,
...) as cluster:
Start source streams

Execute test events (Grow, Shrink, Crash, Recover,

)

31

https://unsplash.com/@wirhabenzeit/portfolio

@nisanharamati

Nisan Haramati

Model-Based Testing

> PBT+ EZE + Model v .
. © °,
> Model informs g Property? “«;,(‘
()
> |nput generator ©
> Event generator System
> .apply(x,) => vy, .
Fault generator S
-apply(x,) =>vy, .

> Online/offline validation
> (Generators may try to cover state space

32

.

Si——

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

@nisanharamati

Nisan Haramati

Model-Based Testing

Fuzzer

Property?

> Events are applied to
> asystem under test
> a model of the system
properties as states (e.g. an FSM) System
.apply(x,) => vy, .

> After each application, the properties
of the SUT and the model are

Model
-apply(x,) =>vy, .

compared

.
Si——

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

@nisanharamati

Nisan Haramati

Model-Driven Testing

> FEvents are applied to
> a distributed system under test

> a model of the system properties
System
.apply(x,) => vy, .

Fuzzer

Property? ®

Generate

as states (e.g. an FSM)
Model
-apply(x,) =>vy, .

> After each application...
measurement may not be possible

34

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

@nisanharamati

Nisan Haramati

Model-Driven Testing
Fuzzer

> Signal & Measurement v -
__ e & « \
> Self-validating applications - Property? %,
> (Can we validate guarantees °
within the test application? System
1) .apply(x,) => vy, .
> The .apply(...) mayinclude S
-apply(x) => vy, .

validation logic

35

.
- L
W

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Examples

.\\'

36
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Signhal & Measurement

> Properties > Operations
> Ordered > Scaling
> No loss > add/remove nodes
> No duplication > Reliability

> crash / recover nodes

> State is Opaque

e

37
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

State Consistency Signal

Count(word, total) =
total += 1
return total

(op,, state,) - (op,, state,)

Op State Output
before

0 0 1

1 1 2

2 2 3

3 3 4

n+1

38

https://unsplash.com/@wirhabenzeit/portfolio

State Consistency Signal

Count(word, history) =
new_count = history.last + 1

history.push(new_count)
return history

(Count.(“dog”), [0]) -
(Count,(“dog”), [0,1,]) - .
(Count (“dog”), [0,1,.,n-1,n])

Op State Output
Before

0 [0] [0,1]

1 [0,1] [0,1,2]

2 [0,1,2] [0,1,2,3]

3 [0,1,2,3] [0,1,2,3,4]

n [..,n-1,Nn] [...,n,n+1]

39

https://unsplash.com/@wirhabenzeit/portfolio

State Consistency Signal

(Count.(“dog”), [0]) -
(Count,(“dog”), [0,1]) - .
(Count,,(“dog”), [...,48,49]) -
>>CRASH>>
<<RECOVER. ..
ROLLBACK<<
(Count,. (“dog”), ???)

[...,49,50] + [51] \/

[...,41,42] + [51] X

Op State Output

50 [...,48,49] |[...,49,50]
51 (good) |[...,49,50] |[...,50,51]
51 (bad) [...,41,42] |[...,42,51]

40

https://unsplash.com/@wirhabenzeit/portfolio

State Consistency Signal

At the output (offline validation):

[...,49,50,51]
[...,41,42,51]

4
X

Op State Output

50 [...,48,49] |[...,49,50]
51 (good) |[...,49,50] |[...,50,51]
51 (bad) [...,41,42] |[...,42,51]

41

https://unsplash.com/@wirhabenzeit/portfolio

Inconsistent State Detection

On update (online validation):
> +1 logic is insufficient
> Need sequence info of input message

Observe(next, history) =
if next != history.last +1:
crash(“Sequentiality error!”)
history.push(next)
return history

Op State Next Next -
last

50 [...,48,49] |50 1

51 [...,49,50] |51 1

(good)

51 [...,41,42] |51 9

(bad)

42

https://unsplash.com/@wirhabenzeit/portfolio

Wallaroo - Scaling and Recovery Tests

Fuzzer

For a given set of operations
ops = [Grow(2), Shrink(1),Crash(2) o o
Recover(2),Grow(1)] ® <
2 Property? Q}
(<)
Start a cluster i
with Cluster(...) as cluster:
System
Start source streams ‘apply(x,) => y,
Model
-apply(x,) =>vy, .

Execute test operations

for event in ops:
event.apply(cluster)

43

https://unsplash.com/@wirhabenzeit/portfolio

Wallaroo - Scaling and Recovery Tests

Dense matrix test generator
for api, group in APIS.items():

for app in group:
for ops in SEQS:
for src_type in SOURCE_TYPES:
Create & execute tests

30 Recovery test sequences
144 Scaling test sequences

Generate

Fuzzer

Property?

System
.apply(x,) => vy, .

Model
-apply(x,) => vy, .

44

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo - Topology Tests

> Recall word count Source(Decode)
> Application topologies .to(Split)
are user-defined .to(Lowgr)
> |nfinitely many .EZ(SEr:(LIBI)Ke Function)
. . .Key_Dy(MyReyrunctl
> Like testing a VM _to(Count)

or a compiler .to_sink(Encode)

45
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo - Topology Tests

> Recall word count Source(Decode)
> Application topologies .to(Split)
are user-defined .to(Lowgr)
> How can we test this? .EZ(SEr%I\eI)Ke Function)
: .Key_Dy(MyReyru g
> Code generation .to(Count)

.to_sink(Encode)

46
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo - Topology Instrinsics

> Computations > (Concurrency
Stateless __" > Flow Modifiers

State + in in, v out in [out,,...]
routing One-to-many
Filter o /e (>_n"“

47
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo - Generative Topology Tests

> |ntrinsics — basis
> Test cross product of

{ computations }
{ flow modifiers }
x { concurrency }
{ cluster size }

48
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo - Generative Topology Tests

> |ntrinsics — basis > Tracer app

> Test cross product of > Append step ID and
monotonic counter value

> Send message forward

> Validation

> Reconstruct topology from
trace output

{ computations }

concurrency }
flow modifiers }
topology depth }
cluster size }

{
{
{
{

X X X X

> Compare against known
application topology

|, —

49
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

Wallaroo - Generative Topology Tests

> |ntrinsics — basis # Create topology sequences
for d in depths:
> Test cross product of for steps in product(groups, d):
{ computations } for size in cluster_sizes:

Create & execute tests
concurrency }

flow modifiers } # Process output traces and
topology depth } # match against ‘steps’
cluster size }

X X X X

{
{
{
{ -
504 Topology tests

50
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

@nisanharamati

Nisan Haramati

Refinement and Shrinking

. =% o
> After we find a failing test case 4
> Alert and stop
N - A F
> Try to minimize test input A)
> Easy”* for 1-dimensional fuzzer § p ty? %
> Model dependent for & rx ‘
multi-dimensional fuzzer Systen
-apply(x,) =>y,

* still difficult
51 »

.

Si——

WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

In Summary - Model-Driven Testing

> Property-Based Tests for End-to-End Properties
> Validation and Regression testing
> Functional, Operational, and Qualitative properties
> Distributed systems testing
> Where measurement can be hard or impossible

> Another layer on top of unit, integration, and system
testing

e

52
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

In Summary - Model-Driven Testing

> Requires
> End-to-End instrumentation (provision, deploy, run,
control, collect, teardown)
> A model of the properties being tested
> A test generator
> Reduces work required to cover a large test space

e

53]
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

Nisan Haramati @nisanharamati

References

> Hillel Wayne on Types of tests:
https://www.hillelwayne.com/post/a-bunch-of-tests/

> Model Based Testing - https://fen.wikipedia.org/wiki/Model-based_testing
> Hypothesis, Property-based testing for Python - https://hypothesis.works/
> Philip Maddox - Testing a Distributed System -

https://queue.acm.org/detail.cfm?id=2800697
> Wallaroo - https://aithub.com/Wallarool abs/wallaroo

54
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio
https://www.hillelwayne.com/post/a-bunch-of-tests/
https://en.wikipedia.org/wiki/Model-based_testing
https://hypothesis.works/
https://queue.acm.org/detail.cfm?id=2800697
https://github.com/WallarooLabs/wallaroo/tree/master/testing/correctness/tests

Nisan Haramati @nisanharamati

Thank you!

Nisan Haramati
@nisanharamati
haramati.ca
nisan@haramati.ca

55
WallarooLabs: Model-Driven Testing

https://unsplash.com/@wirhabenzeit/portfolio

